翻訳と辞書 |
Galois conjugate : ウィキペディア英語版 | Conjugate element (field theory)
In mathematics, in particular field theory, the conjugate elements of an algebraic element α, over a field extension ''L/K'', are the roots of the minimal polynomial ''p''''K'',α(''x'') of α over ''K''. Conjugate elements are also called ''Galois conjugates'', or simply ''conjugates''. Normally α itself is included in the set of conjugates of α. ==Example== The cube roots of the number one are: : The latter two roots are conjugate elements in ''L''/''K'' = Q(''i'' )/Q() with minimal polynomial :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Conjugate element (field theory)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|